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ANALYSIS OF THE THREE LOWEST BENDING FREQUENGIES
OF A ROTATING PROPWLLER*

By F. Liebers
SUMMARY

The available literature on rotating propeller oscil-
lations reveals a lack of uniformity in interpretation,
particularly as concerns the data on the overtone frequen-
cy with respect to the centrifugal forces.

The present report is a survey of the existing data
for computing the bending frequency and a check on the
dependability of the calculating methods.

INTRODUCTION

0f the possible propeller oscillation modes, only the
bending oscillations have been explored to any consider-
able extent. There is no longer any doubt about the oce
currence of the fundamental mode and the first and second
overtones in bending. A number of adequate causes to ex~-
cite the oscillation are also known. The occasionally
volced opinion that, owing to the great air damping of the
overtones, the exciting forces caused by the engine are
too small to incite flexural oscillations of dangerous am—
plitude, is hardly Jjustified. A rough calculation for a
practical example revealed that the amplitudes of the
first overtone would have to reach amounts of the order of
magnitude of =5 cm (1.97 in.) at the free blade tip, to be
capable of equalizing the exciting forces set up by the en-
gine. All damping other than air damping was, of course,
disregarded thereby, and allowed for in the customary semi-
steady fashion, '

*1Zur Berechnung der 3 tiefsten Biegofrequenzen der umlauf-
enden Schraube." Iuftfahrtforschung, August 31, 1935,
ppo 155"‘1600 '
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But for all other investigations,. the exact knowledge
of the oscillation frequencies of the rotating propeller
is of fundamental importance. And even here there still
seems to prevail a certain doubtfulness. For example,

F. W. Caldwell, in a recent report, gives new coefficients
again for the frequency formulas which are markedly unlike
the figures known heretofore, particularly for the over-
tones. On the other hand, M. Hansen and G. Mesmer's re-
port, published in 1933, which proved the occurrence of
overtones in experiments, failed to give a correct picture
of the previous experiments, which chiefly concerned the
fundamental mode,

The chief aim in the following is to survey the existe
ing data for computing the frequency of the rotating pro-
peller with a view to elucidating the actually attained
dependability factor, at least in this point. This affords,
at the same time, a supplement to the calculation of the
overtones. A definite knowledge of the harmpnics at the
second overtone frequency may, for example, become of im-
portance when applied to the coupling with torsional os~-
cillations for frequencies of the same order of magnitude.

Fundamental liode

The .-frequency of a rotating propeller is usually ex—
pressed Dby

}\'2 = )\'02 + C 0.)2 (1)
(0 = revolutions, © = constant = centrifugal force coeffi~
cient, Ay = Ny—, = static freguency). Various writers

have,qompu%ed a number of such formulas (reference 7) for
specially simple bar shapes, wherein constants A, and ©
in (1) assumed different values, depending on the particu-
lar visualization for the bar representing the propeller.
As a result, the frequency formula established for an ex-
ample considered typical, had to be considered as being of
general validity for real propellers. But this made the
problem subject to certain inaccuracies which, for the
centrifugal force coefficient €, caused a scatter of 40
percent or more, To illustrate: For the two idealized
propellers which had (1) a rectangular section with the
moment of inertia varying with the cube of the length, and
(2) a rectangular section with theé moment of inertia vary-
ing with the .square of the length =~ "the centrifugal force
coefficients, ¢ = 1,52 and ¢ = 1,08, were computed. It,
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on the other hand, such discrepancies were deemed too seri-
ous - and rightly so - then it-became neeessary to ascer-
tain the elastic line from the exactly defined bar form of
every single propeller, and then determlne‘the, ¢ factor
from it each time, as was necessary in Southwell and

Gough'!s report (reference 2). The mathematical treatment of
the centrifugal force effect is guite tedious, especially

if it includes the overtones. For this reason, it has

never been attempted except 1n ideal cases, Such~a$'citéd‘
above. - o S '

In point-of fact, the conditions relative to the fre-
quency rise of .the rotating propeller is far more simple
than the dlscrepan01es in the data of the older literature
seem to indicate. As they were all based on the elastic
line of the stationary bar, they are, strictly speaking, .
appllcabie .only for very low values of r.pem. And for
these, the factor € -is subordinate, because the percent—
age of freguency increase itself is small. At the maximum

) : w ~ . ’ -
number of revolutions Y 1e5. in guestion for the pro-
0

peller, the frequency risc due to centrifugal force
amounts, however, to about 1,000 percent, and -as mucn as
50 percent even in the practicalﬁrmore important Xﬁ N1

repele range., For these conditions the 1eve11ng effect of
the centrifugal force must now become noticeable, which
makes itself felt in such a way that, with increasing cen-
trifugal force, the oscillation modes of the unlike shaped
bars continue to become alike and approach the oscillation
line of the flexurally weak cable. The latter as well as
lowest oscillation freguency of the cable are, however,
unaffected by the distribution of mass over the length.
(See Appendix,) Thus the marked discrepancies of € in
the early experiments can scarcely be factual, as soon as
the centrifugal exceed the elastic forces. :

This was, in principle, the result of the writer's
investigation (references 3, 4, and- 6), made on the simple
premiges that the bending frequencies of two rotating .
bars, even. if of marked difference. in form, are practical-
ly alike so  long as their static frequencies. are the same,
This also permits the inclusion of bar forms é6ther than
straight and untwisted, such'as“sre'found‘on'propellers.

In these cases. rise of A, due to twist, admittedly

increases, but. the additional fregquency rise due to cen-
trifugal force is deter@ined largely by the mass distribu~
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tlon along the bar aXIS itself rather than the sectional
orlentatlon.

: The centrifugal force effect is therefore seen to be
practically unaffected by the propeller shape (that is,
also from erroneous idealizations of the propeller. shape).
Once it had been determined, the problem resolved itself
to defining the static frequency A, for each particular
cases, This is, of course, markedly dependent on the shape
-and other peculiarities of each propeller. Its true value
is best obtalned by test. ’

The mathematical exploration of these relationships
(references 3 and 4) while, to be sure, no mathematically
exact treatment, nevertheless afforded an amply safe ap-
-proximate solution on the basis of Rayleigh's minimum equa-
tion: '

= [X1 M® + Xz 0®] 5, = F1 Mg + Fo 0° (2)

wherein Xi, X5 are functions of the bar form and the os-—
cillation curve F,, P, their values after formulating
the minimum, with the characteristic of being practically
invariant at constant Ko» against far—reaching changes in
bar form.* Eguation (2) was numerically computed and then
replaced by the interpolation formula corrected for hubd

effect:
7 CRY
()
o
W

6 + 7 X;> | . (é)

7\2}'=1+
o)

so as to insure porfect freedom from tables or curves,
(See fig. 8, reference 4.) But the correction factor for
nornal conditions is almost zero, as proved by Hansen and
Mesmer's experimental data on section and inertia moment
distribution (equation (32), reference 4), that it may be
disregarded altogether. On many propellers the concept of
rigid hudb is ae€1nitely unjustified. **

*The modification of the bar form extended from cylindric-
al to linear and quadratically tapered bar together with
taper of sectional inertia noment from linear. to scquared law,
**If, in special cases (and for ® > A,) the omission of
the propeller is inadvisable, a slight error in hub size
neans only a minor correction error.



N.A.C:A. Technical lemorandum No. 783 5

Objections are raised in Hansen and Mesmer's report
against the writerts effected idealization of blade form
and the subsequent option in the method of caleculating the

-determining . root section.. These objections are unfounded
-according to the above arguments advanced relative to (2),

in-a given' case* in conjunction with the smallness of the

‘hub effect, as soon as the true static frequency Ay 1is
~ known (by test, for example), as particularly premlsed in

our last report (reference 6)

The use ofAexPression (3) as an'interp01ation formula

is wholly optional. It is not aptly chosen as may be seen

from a quick comparison with results of the shape (1). It
is more elu01dat1ve to expand the numerically obtained fre-
quency A° conformably in powers of w2 to conform with
the manner of expressing equation (1). With four concrete
values (which, in fact, is amply sufficient):

Ao W _

xo = 1 for Ao =0 ‘L
= 1,16 = 045 (reference 4, fig. 8)
= 1.51 =1 |
= 1,95 = 1.5 |

equation (3) is replaced by

%ﬁ)é = i_f 1.43 (%t)z - 0.20 ( > + 0.05 ( > (4)

applicable to 0 < X_"S 1.5. Then (4) affords the follow-

w
ing: For R; < 1, the flrst and second terms sufflce,

for %i approaching 1 and beyond, the higher powers are
Mo ,

of 1m£ortance. This decides, in addition, the coefficient

of W in the proved manner, applicable to all practic~

ally possible propeller forms. %The value 1,43 itself

cannot change even on completion of the serieS-ié»a

" With this manner of wrltlng (4), the experimental
proof of the theoretical frequency of the rotating propel-
ler becomes quite apparent. To illustrate: Referring to
Hansen and Mesmer!s proPeller test (reference 7Y, it first
establishes one and the same dependence of the freguency
on the r.pe.ms for eight different propellers, and then

~this 'is repeated through formula (1) with C = 1.45, Tle

*That is, with extreme changes 1n blade form near the root
from the elementary forms relative to which (2) proved
"invariant.
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measurements extend to resonance cycle w = K/Z (two exci-
tations per cycleé)., As far as this value, the agrcement
with (4) .is practically complete (fig. 1). Extension to
jnelude the next resonance w = A/1le5 (possible for pro-
pellers on 6- or le=-cylinder engines) should have been of
interest., Wec think it would have shown discrepancies from
the simple extrapolation with C = 1.45. ‘

Our own experiments on elementary bars (reference 6)
intended to confirm the theoretical premises by allowing
for any possible blade characteristic (twist, camber, hub)
as well as extension to higher m/Ko values, had already

proved the extended validity of the posed frequency formu-
13.5..*

Following these arguments on a proved formula of gener-
al validity, together with its experimental confirmation,
should remove any doubt as to the definite determination of
the fundamental mode of the rotating propeller., Incident
to the determination of the static frequency Ko the folw-
lowing is noted: )

Equation (4) is silent as regards the value of KQ;

its determination is a problem in itself which, however,

is guickly and reliably obtainecd by experiment in nearly
ecvery casc. . Even the development of a new type generally
affords an occasion for an experiment. If one is restrict-
ed to a mathematical trcatment, there are certain graph-
ical and mathematical methods available, such as those
used by Southwell (reference 1), Hohenemser {reference 5),
Hansen and Mesmer (reference 7), etcs., whose results are,
however, restricted for the reason that they are contingent
upon certain omissions (twist, camber) ‘and appraisals (met-
al edges, propeller surface, etc.) quite apart from the

*Under these test conditions, any discrepancy between the-
ory and test became, of necessity, quite apparent, as
proved on two examples computed according to formula (1).
Hansen and Mesmer's criticism (reference 7) is without ba-
sis when implying the insertion of € = 1.52 1in (1) for
conparison of the employed case of cylindrical bar. Berry
(reference 11) as well as Southwell and Gough (reference
12), shows € = 1.,19 for the cylindrical bar. Admittedly,
the value 1.52 would "fit" better for the wedge, which is
not at all surprising, according to (4), but just as aceci-
dental as that the ¢ = 1,08, which fundamentally has the
same claim to general validity, did not fit. :
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uncertain knowledge -of material constants (Young's modulus,
deﬁs1ty) in many cases’ (wood SErews) s

Yet another frequently underestlmated source of error
is the presumption of absolutely rigid restraint at the root,
because the frequency .is quite responsive relative to the
edge condition.* Several practical examples for computing
‘the static fregquency A (for fundamental mode .and first
overtone) will be found in reference 7. .The calculation was
checked experimentally on 1:10 scale models., The agreement
is fairly close although discrepancies up to 13 percent oc-
cur. One peculiar fact was that the calculated values are
almost all above thé experimental values, contrary to the
‘expected opposite, because the bar twist is not allowed
fors.. For .thigs:reason, it is advisable to make~a check -test,

In coﬁc1u51on, we point to a recent report by Rezssner
(reference 8), who investigated the bending oscillationsg
of propellers with reference to small camber and arbitrari-
ly great initial twist., The latter exerts an effect of the
first order on the flexural oscillations. The numerical
data have not been published as yet, but are announced for
a second report.

Overtones

The first publication on overtones of rotating bars is
that by Hohenemser:(reference 5). He obtained the over-
tone freguencies as’ fundamental freauencles of a bar modi-
fied in the nodal points by bearings, after the nodes had
been established by means of a limiting condition,

-In one example the centrifugal force factor is com—
..puted according to (1) for the first overtone at ¢ = 3,9
and for the second, at ¢ = 12.2. This was followed by
Hansen and Mesmer's experiments (reference 7), which first
revealed the occurrence of the first overtone along with
‘the fundamental mode. The tests reveal C = 4.4 for the
‘first overtone. Then Caldwell (reference 9) proposed C =
3 . for the flrst and C = 4.5 for the second overtone.

The glven flgures scatter con51derab1y. . But a close
appraisal of the pos31b1e centrlfugal force coefficments

*Concerning this condition, no certain conclusions are
possible between model and full-scale test, '
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of the overtones is obtainable by fairly simple means, as
shown by the writer's method utilized for computing the
overtones (reference 6)

For a natural oscillation y(£) sin h t the energy
equation gives the true frequency at: . )

2 . Ug(y) . Up(y)

M=y T T

M2 (3) + AR (3) (5)

when y(&) is the true oscillation line. Uy 1is the po-
tential energy of tle elastic forces, UF of the centrifu-
¢zal force, and T A°  the kinetic energy; K% and A are

the abbreviated summands shown at the left. Now, accordiag
to Rayleigh's law, the corresponding freguency computed
from (5) varies only by a small amount of the second order -
for both fundamental mode and overtounes - for small varia-
tions of y. But, while this affords an upper limit, in
the case of the fundamental mode, the approximately de-
fined overtones do not of themselves reveal whether they
represent too high or too low wvalues.

¥ow the true natural function (&) in (5) must 1lie
between the oscillation lines yE(ﬁ) and yF(E) which
are, for the present wvalid, provided the variable centrif-
ugal forces are considered effective on the bar. Since
they are nearly alike in any case (as proved elsewhere),
equation (5) affords approaches when either Yyg or ¥y
is introduced. A third approach is obtained by writing
yg in the first summand of (5), and yp 1in the second.

Then each becones equal to: Ag® and Ay® (Ay = frequency
due to centrifugal force effect alonc) and, since accord-
ing to Rayleigh, the replacement of ¥y for yg Pr. yf’
involves nd appreciable error, we have :

A= MR A® (6)

as au appfoach. (However, we do not clain, as was possi-
ble with the fundamental frequency, that (6) inplicitly
denotcs a lower linit.) The two first approaches are:

2

Ao

It

o o €.
A o= A (rg) o (yg) + Ao (vg) (62)

>
]
I

il

NZ (yp) + N () = N2 (o) + A (D)
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The fornm (6) is the most simple because normally the
nunerical deternination of A nay be foregone in favor
of a test,-thus.leaving onlyrohw to be ascertained. The
latter M\y,. is the frequency with disregarded elastic:

forces; that is, simply the frequency of the flexural soft
cable which merely depends on the mass distribution. It

is readily computable and needs to be calculated no more
than once because the mass distribution for practically
all propeller forms can be guite exactly expressed as lin-
ear function of length, and any perceptible discrepanciles
from this assumption near the blade root may be neglected,
since they arec not likely to affect the cable frequency.
The calculation of Aw up to the second overtone, is shown
in the Appendixz.' Writing the obtained values in (6) gives:

2 .
N =\, + 4.15 »®, 1st overtone (7)
o= N, o+ 9.2 w?, 24 overtone (8)

as generally applicable approximation formulas.

On the other hand, the use of Hohenemser's formulas
(reference 5) for the maximum-minimunm properties of the
higher natural frequencies, gives sone consideration to the
possible errors in the approximation formulas (6) to (6Db).
The assumption that the nodes of the bar subjected to elas-
tiec or centrifugal forces only, lie in both cases very
close to each other, is itself legitimate. On the cylin-
drical bar, for instance, the node of the first overtone
lies once at £ = 0.78, and then at ¢ = 0.775 (= /0.6
Avpendix, eguation (11)). Besides, as the frequency (on
account of Hohenemser's stipulated limiting condition for
the nodal points) is fairly jndifferent to minor displace-
ments of the nodal points from the true nodes, the over-
tones of the bar may be safely assumed as fundamental
modes of a substitute bar with supports in the nodal poiats,
which are available from the true oscillation line of the
elastic bar or from the cable oscillation line. Then the
frequency computed with yg or ¥y becomes the upper lime

it for the fundamental mode of the substitute bar and con-
sequently also for the overtone of the original bar. How-
ever, it should be borne in mind that this analysis is not
rigorous, and . that in the unfavorable case where the dige
crepancy of the true from the assumed nodal positions
reaches a "finite" value, the approximation frequency of
the particular overtonc can also become too low. Strictly
speaking, Hohenemser's upper linits are not valid either,
because they approach (6a). '

N\
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With this reservation, however, all theorems applica-
ble to the fundamental mode of the substitute bar support-
ed in the nodal points, are equally valid for the overtonc
of the original bar. In other words, the values (6a) and
(6b) are two upper linits and value (6) a lower limit for
the true freguoncy.

Described preferadbly with the first overtonc of the
cylindrical bar for which all nunerical values are exactly
known, the following picture is obtained: With the con-
vential symbols for rigidity, mass, and length, the ap-—
proach (6) gives in this exanple:

Ao + Mo = 22,0347 EE%V + 6 0 < N (1)

(The value Koa is known, Ao = 6 ®° is found in
the Appendix.) Likewise, (6a) gives:

22,034° ;3%1 + 7.0 00 = N2 4 1.167 A® > A (1)

(equation (5), reference 5)*, and (6b) gives (yF is

equation (11) in the Appendix with C = 6):

BEJ 2

22,0137 —S0z + 6 ©® = 1.081 A7 + ho® > A (111)

and of the type shown in figure 2., (In reality, the curves
are much closer together.) Figure 3 gives the percent dis-
crepancy of frequency computed according to (1), (11), and
(III)., ¥Yow the true frequency is bounded dy two upper
limits, one of which is favorable at low, the other at
higher cycles, and by a lower limit. It must lie within

he hatched zone. Since the greatest possible movement
within the zone of demarcation is less than 3 percent (at
intersection of both upper limits: w/A, = 0.28), the accu~-
racy of the calculations is good and the lower limit

2
Koz + My~ chosen as the most appropriate formula because
of its simplicity and the unlimited validity range in W,

For the fundamental mode the conditions are not so favor-
able because yg and Jg deviate more.,

Following this discussion of the accuracy of approach-
es of form (6), we return to our practical problem, that
is, the special formulas (7) and (8). The only doubtful

*Limited to the determination of A, - instead of 22.03 -
22.6 according to the employed iteration method.
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factor lies in the general assumption of linear cross-—
section distribution. The first overtone ~ formula (7) -
can be chécked on the basis of ‘Hansen and Mesmer's pro-
peller tests, which gave C = 4.4. The measurements ex-
tend to A = 3 w. Figure 1 shows the extent of agree-
ment between theory and test. Hohenemser'ts figure, € =
3.9, approaches that of equation (7) very closely.
Caldwell's figure (fig. 1), € = 3.0, differs considera-
bly and leads to objectionadly great uncertainties, so
that in view of the proven data, it may be ruled out.

The second flexural overtone of the propeller must
algo be included within the range of practical considera-
tion, because in thin metal propellers, for instance, the
sixth harmonic of the torque impulses may develop rocso-
nant oscillations a%t the r.pe.m., occurring during its op-
eration. In fact, there are cases in which the second
overtone was claimed to be the cause of propeller damage
(reference 10). Morcover, thec second overtonec is of in-
terest becausc its frequency approaches the torsional
frequency of the propeller (references 3 and 4), with a
possibility of resonance.

Test data are available for the second overtone of
the rotating propecller. Figure 1 shows the value for (8)
as well as Hohenemser's ¢ = 12.2 and Caldwell'l's ¢ = 4.5.
The first two values rcveal tolerable discrepancies; but
since Hohenemser'ls second overtone had been only roughly
computed (reference 5), and our method had proved very
satisfactory for the first overtone, the value of (8) may
be considered as being the safer figure. Caldwelll's C =
4,5 is evidently much %too low.

After this discussion, the chapter on flexural pro-
peller modes may, so far as concerns the determination
of the oscillation frequency, be considered closed and its
results as amply safe. (The principal formulas are col-
lected in the Appendix, while figure 4 contains a practi-
cal example.)

The resonance T.p.me. for m ‘excitations per rotation
are given with : ‘ :

W 1
=/ = (9)
X; m® - ¢
Resonance is possible only when m2 > C; otherwise,

the interscctions of the straight line A = m ® with the
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frequency curves are imaginary or infinite. If w®,. as com~
puted from (9), exceeds 1.5 times the static frequency for
the fundamental mode, they are practically negligible be~
cause they lie above existing re.pe.me.

APPENDIX

Cable Oscillations

Tith y(x) = cable line (free catle end at x = 1),
t = time interval, m = mass, S = tension, the differen-
tial eguation of the cable oscillation reads:
. 5 - . . R
v d /., O¥ . 1
m 5 = -{(8 =— ), where § = w° /f mx dx
2t°  9x \ 3x xf ,

The new variable z = 1 = % introduced for simplicity,

gives:

1, For m = constant,

2

’ 2
I o X4 R4
5 = 2(1 - Z') 5: + Z(g - Z) 5;5

P

(e¥]TeY)

2
w2
The equation of the fundamental modes

y = y(z) sin A t
. 2

in conjunction with the abbreviation o = C gives the cus-

tomary differential equation of the second order:
i®y

1Y sz -2)+ H a1 -2)+20cy=0 (10)
dz dz :

of the type of Bessells differential equation. Posing the

solution as power series and defining its coefficient from
the differential equation, results in:

y(z) = 1=Cz -+ .c..g_g:.:_l_l. 22 - Q_LQ::!I'.)_)_(&%:S.l Z3

c(g-1) (¢c-3) (c~6) _& T
+ ixoxais % 7 (11)
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The limiting condition y(1) = which, as is easily
e = geen, can equally well Dbe wrltten in the form of infinite
product: -

y(l) = 0 = (¢-1) (c-6) (c-15) (C~-28)
| [c-n (2n-1)]
with rgadily.recognizable roots afford the frequencies
(c = %Z) : 2% = 0, A% = 6 0%, A% = 15 ©° ete. (not 1, 3,
6, 10, efc.).' )
2e For m = my z, the differential equation

d®y dy

2 3 - 2z) + — - + =
1% Z ( z) 1, © (1 z) 6 Cy =0

replaces (10), resolving to:

y(z) = 1 - Cz + gi%:ll z®

!

- ~ 8 - 8, -
_ole-1) (C.___§ L, ote-n) (c 3> (c-5)

3 X 6 3 X 6 X 10

c(c-1) (c - —> (c-5) (c-8)

- e z 5
3X6X10X15

N\
c(c-1) (c - %) (c-5) (c-8) (c 35
2 X 6 X 10 X 15 X 21

+

1
)
N
)
+

The limiting condition y(1) = 0 affords (but not as
readily as in the first caseg the roots C and consequent~
ly, the frequencies: AA K = 4,15 w? s A° = 9.2 w°
etce.

- The oscillation line of the fundamental mode is a

straight for any mass distribution, its frequency equal to
the simple r.p.m. .
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Collection of Formulas

Discrepancies in the data and method of representa-
tion of different reports on flexural propeller oscilla-
tions suggested a survey and  -supplementary information for
the purpose of coordination of the dependability of the
mechanical principles for the calculation of the resonance

TePelle

The fundamental frequency of any propeller is:

2 ' 2 4 8
AN L WY - w
X;) = 1 + 1.43 <Ab> 0.20 (Ab> + 0.05 <Ab>

valid for w
< <
O - XO - 105

(A corresponding series expansion is necessary for

W
the 0 < x— < o« range.)
o}

According to tests (reference 7):

- < 0.626.

o
tA
>
IA
LT
>
J
(=0
o
o
>

Test range

o
(o)

Theoretically, the first overtone is:
2 2
A ' )
. 1+ 4.15. N
o 0

. _ W .
valid for 0 S'Xf < »
(o}

1l

Tests (reference 7) revealed:

<£%>2 = 1 + 4.4 (%2)2
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Testvrangew-o“s.xr = % K7 ives, 05 +— S 0.466.
o} 0 I R '

>

Wo ‘experimental data are, available on thd second ovér=
tone. °'The theoretical value is figured at:

N 2 W\
ITd%) =1 4+ 9,2 <;_>..' e S .
.<X'o>' '. >\'() - ) ' B .
w
valid for . . R
The resonance r.pe.m. lies at
w _ L
X0 f\/,mg - C ’
wherein ho is ‘the static frcqueoncy, € the coefficient
0N . - : S
of 'X—> " in ‘the above equations for the fundamental fre-

guency, firgt aand second overtones, and m, the excitation
per cycle., At higher revolutions (w/ho 2 1), formula (4)

with the higher powers can be used for the fundamental mode.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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rotating propeller versus
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% = | Figure 2.- Illustration of
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% 4 / and second overtone 3
1 ‘ /7 for a practically // -
}’. [ p 0 feasible example where- a
#ra 4 by the three static / // //
;."; M ""”“""-"”0""% frequencies are as , W : A
70k /| S — 1:3:6. The dashed lines "'”“’,,,/ / s
7 a i “ ¥ intersect the frequency g M P /
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# A%’”\ practically highest / /}5 4 / /// §
: m NHIH : possible resonance // A5 —= ——
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Figure 3.- Discrepancies of frequencies 7 T a
computed according to II, > ﬁ:&/
f frequency computed
III in percent o equency P 0 % TR R

confornably to I.
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